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Higher-order approximation for free shear layers 
in almost rigid rotations 

By L. PAMELA COOK A N D  G. S .  S .  LUDFORD 
Department of Theoretical and Applied Mechanics, Cornell University, 

Ithaca, New York 14850 
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The free shear layer stemming from a discontinuity in angular velocity at either 
of two parallel disks in almost rigid rotation with fluid between is re-examined. 
The sole discrepancy between theory and experiment is unaffected by higher- 
order approximation unless curvature effects are included, when it is reduced. 

1. Introduction 
The flow between two infinite disks rotating at  slightly different rates was 

treated by Stewartson (1957), who, in particular, effectively gave the first two 
leading terms in the free shear layers which originate from discontinuities in 
angular velocity a t  either disk. The result was later checked experimentally by 
Baker (1967), using disks whose (equal) inner portions rotated rigidly a t  
slightly different rates from their outer portions. For the antisymmetric part 
corresponding to inner portions rotating a t  equal but opposite differential rates 
to the outer portions, theory was found to differ from experiment by about 40%. 
[There was satisfactory agreement for the symmetric part as well as on various 
other questions.] 

In  calculating Stewartson’s values for his apparatus, Baker made an error, 
whose correction decreases the discrepancy slightly. The possibility of decreasing 
it further without taking the curvature of the layer into account is offered 
by a rough estimate of later terms in the expansion, which Baker must pre- 
sumably have thought were mainly responsible. But, surprisingly enough, 
closer inspection reveals that these are of alternating sign and tend to cancel, 
so that only marginal improvement is obtained from four later terms (which are 
shown below to give the same accuracy as the complete expansion). 

We therefore turn to the neglect of curvature, which, though it is justified for 
the first two terms to which Stewartson limits himself, is not justified beyond 
them. Baker left the impression that curvature and nonlinearity together were 
not responsible for any substantial difference; in fact we find that curvature 
produces a 5 %  change. Including the effect of curvature decreases the dis- 
crepancy between theory and experiment by 7 %. 

The object of the present note, then, is to give the predictions of the complete 
linear theory where there was substantial disagreement with the theory used by 
Baker, and to show that the improvement is not due to higher-order approxima- 
tion per se, but to the inclusion of curvature in it. 
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FIGURE 1. Schematic cross-section of Baker’s apparatus. 

In  all other aspects of Baker’s experiment there was good agreement with 
the approximate theory, so that the question arises as to whether this is now 
disrupted by the complete theory. We checked this and found virtually no 
change; in fact, the reason can be pinpointed in the analysis. The details are 
quite uninteresting so we shall not record them here. 

2. Analysis 
We start by giving a brief but complete analysis of the antisymmetric part 

tailored to Baker’s notation, so as to have the various approximations clearly 
set out. 

The relevant equations (cf. Stewartson) are 

ED2v = $z, ED4$ = -vZ, 

where (Ekman number), 

and the r and z velocity components are 

u = $s, w = -r-l(r$)r. 

Here the units of length and velocity are Baker’s, namely the distance H between 
the disks and the velocity differential w R  at the discontinuities (see figure I, 
where the sign of w has been changed to ensure positive w). The boundary 
conditions become 

T r l R  for r < R, i 0 for r > R, 
$(r, -I- i) = $*(r, k +) = 0 v(r,  r f :  4) = 

plus the vanishing of velocity on the side wall of the cylinder (which is irrelevant 
to our analysis). 

Taking Hankel transforms shows that 

3 w  

i = l  0 
v(r ,  z )  = X s Ai(5, E )  &Jl(k) sinha&[, 

$(r,z)  = E i= l  s ~ a ~ ~ ( - 5 ~ + . 1 ) ~ ~ ( 5 , E ) 5 . / 1 ( 5 . ) c o s h a ~ z d b ,  
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where (cf. Stewartson) 
2 

(a% - 53), + a:/E2 = 0, 3 Ai sinh &ai = - Re-1 J2(cR), 
i = l  
I *  

3 3 

i = l  i = l  
C ai’(a% - c2) Ai cosh *ai = C (at - C2)Ai sinh $ai = 0. 

Everywhere outside the Ekman layers a t  z = f 4 these give 

to asymptotically exponential accuracy in E ,  where 

(2’ )  
(1 + E8p4)6 

E%P( 1 - E+p8 - E*p2A) sinh 3p3 + [ZA3 + E*p2(3 + 2E3p4)A2]t cosh 4p3 C =  

and A = (1 + E3p4)4. Here P ( = af) is the real root of ( = E-*p( 1 + E8,84)6 which 
has the same sign as 6. In  arriving at this result we have ignored the side wall of 
the cylinder, since it provides asymptotically exponentially small corrections to 
the above and so ma,y be ignored a t  this stage. Stewartson did not actually write 
down C but went straight to its two-term approximation, corresponding to (3” )  
below. 

From ( I )  we compute (with an error less than any power of E )  

dc 
0 dP 

w = - E B r  f[RJ,((R) CJ,([r) (1 + Ef/34)Bcosh,83.z- dp, 

de 1 l+3E3p4 ---[  dp - E4 ( 1  + E3p4)4 1 ’ where 

this being the component of velocity measured by Baker. The integration variable 
has been changed to p in order to clarify later steps. If curvature effects are 
neglected (i.e. R + a )  this formula becomes 

B cosh p3z cos [ ( ( R  - r ) ]  dp, (3) 

where B = EQ( 1 + 3E3p4) C .  (3’ )  

B = EQ[Ei)p sinh *p3 + 26 cosh 4/33]-l, 

The result is correct to O(E*) since, as Stewartson implied, curvature effects 
are O(E8). Consistently then he set 

a formula which agrees with (3 ’ )  to O(E4). The result (3”), which is due to 
Stewartson, is the basis of Baker’s analysis (although he derives it differently). 

In  general, ( 3 )  can be expected to give accurate results only for very large 
values of R. For any other R ,  curvature effects must be considered. 

(3” )  

3. Numerical results 
In  Baker’s experiment 

E = 0.0022,. R = 12.05/1*27 (4) 

in units of H = 1.27 em. Numerical integration of ( 3 )  with ( 3 “ )  for B and r = R 
then gives curve (a )  in figure 2 when the unit of velocity is 0.0145 x 12.05 cm/s 
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FIGURE 2. Vertical velocity at  r = R. (a)  Baker’s theoretical result (3) with (3”), recalcu- 
lated. ( b )  Complete linear result (2) with (2’).  ( c )  Baker’s mebsurements. I denotes experi- 
mental uncertainty. 

and the unit of length is 1.27 em as in Baker’s experiment; Wand Z are the 
dimensional forms of w and z respectively. Baker evaluated the same integral 
less accurately, but we have not reproduced his curve since the slight difference 
is not pertinent to the present discussion. Baker’s measurements give curve (c)  
and show a discrepancy between theory and experiment of about 40 %. 

When the function (3’) is expanded to six terms before integration the first six 
coefficients C,(z) are 

- 1) 2 0 0 0 0 0 
0 - BP 0 0 0 0 

- ~ 3 1 2 2  o 0 
-3P2/28 0 P 2 P  

0 5P3/22 0 
0 0 0 

67P4/29 0 -17P4/2f 0 P4/2* 0 
- 0  - i i p 5 / 2 3  o 3P5 o - p i 2 3  

tanh 4p3 

tanh2 4p3 
tanh3 

tanh5 

The correyponding terms (in dimensional form) are recorded in table 1 for the 
value of E given in (4). [Note that it is easier to do a straightforward numerical 
integration for these coefficients than to sum equivalent residue series, such as 
that given for C, by Stewartson. The same first two coefficients are, of course, 
obtained by expansion of the function (3”).] The magnitude of all but the last is 
big enough to give a significant correction to w, but the alternation in their signs 
results in an insignificant overall one. The corresponding curve is indistinguish- 
able from (a)  (except near 2 = 0.4, where it is actually higher). Virtually the same 
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Sum of 
all six 

columns 

Sum of integral 
first (3) 
two with 

Z(cm) E*C, EgC, E*C, E k ,  EgC, EC, columns (3') 

- - 

0 0.01973 - 0.00185 - 0.00097 0.00093 0.00031 - 0.00006 0.0179 0.0181 
0.1 0.01989 -0.00191 - 0.00098 0'00098 0.00032 -0.00006 0.0180 0.0182 
0.2 0.02048 - 0.00212 -0'00104 0.00117 0.00034 -0.00006 0.0184 0.0188 
0.3 0'02148 - 0.00255 - 0.00116 0.00156 0.00040 - 0.00007 0.0189 0'0197 
0.4 0.02337 - 0.00338 - 0.00139 0*00240 0.00052 - 0.00007 0'0200 0.0214 

t These values give a curve slightly closer to ( b )  in figure 2 than (a ) ,  which contains 
spurious higher-order terms. The six-term sums in the last column actually move the 
curve away again. 

TABLE 1. First six terms for Baker's experiment, neglecting curvature 

numbers are obtained by integrating the unexpanded function (3'). We conclude 
that the discrepancy is not diminished by higher-order terms per se. 

We now turn to the asymptotically exact formula ( 2 )  with G given by (2'). 
There is no virtue in expanding: we merely note that, if this is done, each of the 
C,is altered by the inclusion of the factor - n[RJ,,([R) J,(tR) in its integrand and, 
since $= E-*/?(1+ E8b4)4, must be expanded out. The values for R = co are 
thereby recovered plus terms of relative order EB, so that the first term in w 
affected by the finiteness of R is O(E*),  as St>ewartson implied. Numerical 
integration of (2) now gives curve (b )  in figure 2 ,  which is about 33% higher than 
curve ( c )  near the centre. While experimental error does not close the gap (which 
is still a t  least 20% when the highest experimental values are used), our results do 
show that a substantial part oE the discrepancy can be attributed to curvature 
effects. 

Assuming that Baker's experiment is reliable and that terms exponentially 
small in E are numerically unimportant, we are forced to attribute the remaining 
discrepancy to nonlinearity. It is curious that only the 'antisymmetric' problem 
shows a discrepancy, since the inertia terms are then smaller by a factor Ei% 
[ = 0.6005 for Baker's value of S i n  (4)] than they are in the ' symmetric' problem. 
It would be interesting to see whether the azimuthal velocity is affected to 
the same extent, but unfortunately that was not measured for the antisym- 
metric problem as it was for the symmetric. 
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